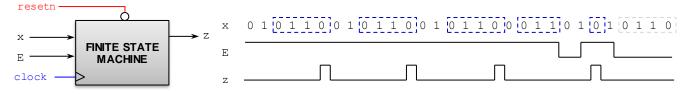
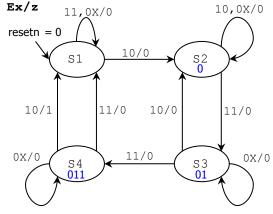

Solutions - Homework 4

(Due date: November 20th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!


PROBLEM 1 (14 PTS)

• Complete the timing diagram of the following circuit. $G = G_3G_2G_1G_0 = 1011$, $Q = Q_3Q_2Q_1Q_0$

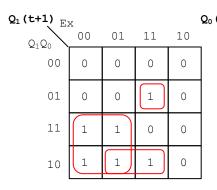

PROBLEM 2 (18 PTS)

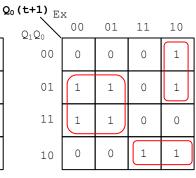
- Sequence detector: The machine has to generate z = 1 when it detects the sequence 0110. Once the sequence is detected, the circuit looks for a new sequence.
- The signal E is an input enable: It validates the input x, i.e., if E = 1, x is valid, otherwise x is not valid.

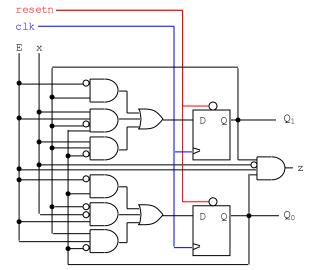
- Draw the State Diagram (any representation), State Table, and the Excitation Table of this circuit with inputs E and x and output z. Is this a Mealy or a Moore machine? Why? (10 pts)
- Provide the excitation equations (simplify your circuit using K-maps or the Quine-McCluskey algorithm) (5 pts)
- Sketch the circuit. (3 pts)

• State Diagram, State Table, and Excitation Table:

PRESENT		NEXT		PRESENT STATE			NE	NEXT STATE		
Εx	STATE	STATE	Z		ExQ	1Q ₀ (t)	Q_1	Q ₀ (t+1) z	
0 0	S1	S1	0		0 0 0	0	0	0	0	
0 0	S2	S2	0		0 0 0	1	0	1	0	
0 0	S3	s3	0		0 0 1	0	1	0	0	
0 0	S4	S4	0		0 0 1	1	1	1	0	
0 1	S1	S1	0		0 1 0	0	0	0	0	
0 1	S2	S2	0		0 1 0	1	0	1	0	
0 1	s3	S3	0		0 1 1	0	1	0	0	
0 1	S4	S4	0	4	0 1 1	1	1	1	0	
1 0	S1	S2	0		1 0 0	0	0	1	0	
1 0	S2	S2	0		1 0 0	1	0	1	0	
1 0	s3	S2	0		1 0 1	0	0	1	0	
1 0	S4	S1	1		1 0 1	1	0	0	1	
1 1	S1	S1	0		1 1 0	0	0	0	0	
1 1	S2	s3	0		1 1 0	1	1	0	0	
1 1	S3	S4	0		1 1 1	0	1	1	0	
1 1	S4	S1	0		1 1 1	1	0	0	0	

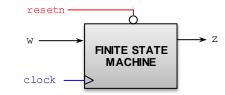

State Assignment:

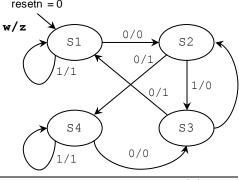

S1: Q=00 S2: Q=01 S3: Q=10 S4: Q=11

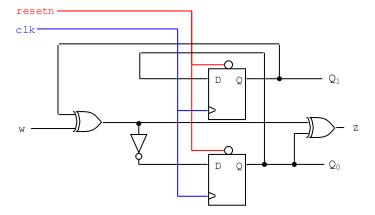

This is a Mealy Machine. The output 'z' depends on the input as well as on the present state.

Excitation equations, minimization, and circuit implementation:

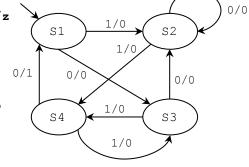
$$\begin{split} Q_1(t+1) \leftarrow & \bar{E}Q_1(t) + Ex\overline{Q_1(t)}Q_0(t) + xQ_1(t)\overline{Q_0(t)} \\ Q_0(t+1) \leftarrow & \bar{E}Q_0(t) + E\bar{x}\overline{Q_1(t)} + EQ_1(t)\overline{Q_0(t)} \\ z = & E\bar{x}Q_1(t)Q_0(t) \end{split}$$




PROBLEM 3 (35 PTS)

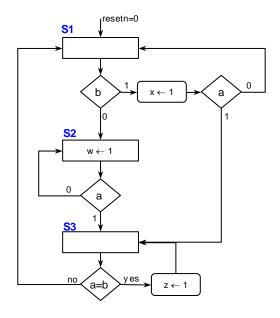

- The following FSM has 4 states, one input w and one output z. (10 pts)
 - ✓ The excitation equations are given by:
 - $Q_1(t+1) \leftarrow Q_0(t)$
 - $Q_0(t+1) \leftarrow \overline{Q_1(t)} \oplus w$
 - ✓ The output equation is given by: $z = Q_1(t) \oplus Q_0(t) \oplus w$

- ✓ Provide the State Diagram (any representation) and the Excitation Table.
- ✓ Sketch the Finite State Machine circuit.

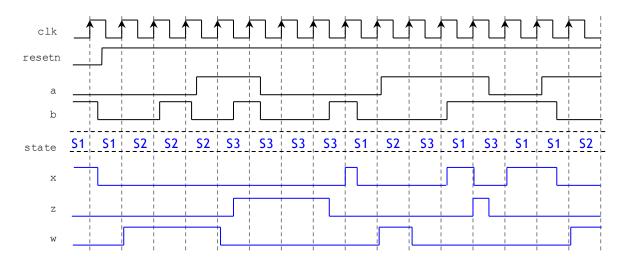

PRESENT STATE		NEXTSTATE			PRESENT NEX			resetn = 0		
W	$Q_1Q_0(t)$	Q_1Q_0 (t+1) z		W	STATE	NEXT STATE	Z	w/z	
0	0 0	0 1	0		0	S1 S2	S2 S4	0 1	S1	
0	1 0	0 0	1		0	s3	S1	1	$\int 1/1$	
0	1 1 0 0	1 0 0 0	0		0 1	S4 S1	S3 S1	0 1		
1	0 1	1 0	0		1	S2	S3	0		
1	1 0 1 1	0 1 1 1	0 1		1	S3 S4	S2 S4	0 1	S4	
						'			$\left(\right)_{1/1}$	

- Given the following State Machine Diagram. (10 pts)
 - ✓ Is this a Mealy or a Moore machine? Why?
 - \checkmark Get the excitation equations and the Boolean equation for z. Use S1 (Q=00), S2 (Q=01), S3 (Q=10), S4 (Q=11) to encode the states.

			PRESENT STATE NEXTSTATE							
	PRESENT	NEXT				_	-			
Х	STATE	STATE	Z		Х	Q_1Q	0 ₀ (t)	Q_1	$Q_0(t+1)$	Z
0	S1	S3	0		0	0	0	1	0	0
0	S2	S2	0		0	0	1	0	1	0
0	S3	S2	0		0	1	0	0	1	0
0	S4	S1	1		0	1	1	0	0	1
1	S1	S2	0	4	1	0	0	0	1	0
1	S2	S4	0		1	0	1	1	1	0
1	s3	S4	0		1	1	0	1	1	0
1	S4	s3	0		1	1	1	1	0	0

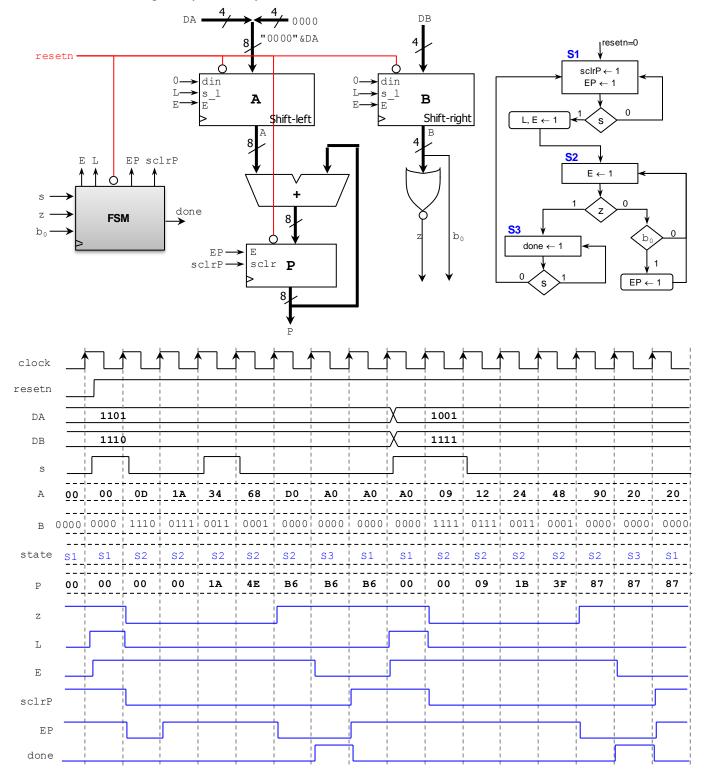

resetn = 0

$$\begin{aligned} &Q_1(t+1) \leftarrow \overline{x \oplus \left(Q_1(t) + Q_0(t)\right)} \\ &Q_0(t+1) \leftarrow \left(Q_1(t) \oplus Q_0(t)\right) + x \overline{Q_0(t)} \\ &z = \overline{x} Q_1(t) Q_0(t) \end{aligned}$$


This is a Mealy Machine. The output $\ z'$ depends on the input as well as on the present state.

3

 Provide the state diagram (in ASM form) and complete the timing diagram of the FSM whose VHDL description is listed below. (15 pts)


```
architecture behavioral of circ is
   type state is (S1, S2, S3);
   signal y: state;
begin
  Transitions: process (resetn, clk, a, b)
  begin
     if resetn = '0' then y \leq S1;
     elsif (clk'event and clk = '1') then
         case y is
           when S1 =>
             if b = '1' then
               if a = 1' then y \le 33; else y \le 31; end if;
             else
               y <= S2;
             end if;
           when S2 \Rightarrow
             if a = '1' then y \le S3; else y \le S2; end if;
           when S3 =>
             if a = b then y \le 33; else y \le 31; end if;
         end case;
     end if;
  end process;
  Outputs: process (y, a, b)
  begin
      x <= '0'; w <= '0'; z <= '0';
      case y is
          when S1 \Rightarrow if b \Rightarrow '1' then x \Leftarrow '1'; end if;
          when S2 => w <= '1';
          when S3 \Rightarrow if a = b then z \Leftarrow '1'; end if;
      end case;
  end process;
end behavioral;
```


PROBLEM 4 (18 PTS)

• Complete the following timing diagram (A and P are specified as hexadecimals) of the following Iterative unsigned multiplier. The circuit includes an FSM (in ASM form) and a datapath circuit. Register (for P): sclr: synchronous clear. Here, if sclr = E = 1, the register contents are initialized to 0.

Parallel access shift registers (for A and B): If E = 1: $s_l = 1 \rightarrow \text{Load}$, $s_l = 0 \rightarrow \text{Shift}$

PROBLEM 5 (15 PTS)

Attach a printout of your Project Status Report (no more than two pages, single-spaced, 2 columns). This report should contain the current status of the project, including a block diagram of your system. You <u>MUST</u> use the provided template (Final Project - Report Template.docx).